

Passive Microwave Training Workshop

Introduction to Passive Microwave Radiometry

&

Passive Microwave Technologies in Development

Mick Johnson, CEOI Director

THE ELECTROMAGNETIC SPECTRUM

Atmospheric Transparency

E Lopez-Baeza, Physical Principles of Passive Microwave Radiometry – ESA Summer School

Centre for

How much energy is there in the microwave band?

Planks Law, long wavelength approximation: Radiance $L_f = 2kT/\lambda^2$ ($\lambda >>50 \ \mu m$ with T=280K) Sun @ 5800K, peak at 0.5 μm Earth @ 280K, peak at 10.3 μm

	Band	Fraction of Total Radiation
Visible	0.5 – 0.6 µm	6 x 10 ⁻³³
Near-IR	1.55 – 1.75 µm	7 x 10 ⁻¹⁰
Thermal IR	10.5 – 12.5 µm	0.12
Microwave	1.52 – 1.56 cm	1 x 10 ⁻¹⁰

Conclusion: small but measurable amounts of radiation are emitted in the microwave region

Main microwave absorption lines

Instrumentation

Scanning options

Limb-Nadir Combination

- PREMIER is ESA mission candidate to observe atmospheric composition
- Important climate observations, combined observations with MetOp
- IR and microwave limb sounders
- Single-sideband (SSB) observations in upper troposphere are a key feature in STEAM-R

Nadir-sounding

- Near-surface layer seen between clouds but
- Little or no vertical resolution

STEAM-R viewing geometry: 14 simultaneous views in UTLS region. Receivers split into two 7-element arrays observing in orthogonal polarisations

MetOp SG mission

- Main application: numerical weather prediction (NWP), and climate monitoring
- Follow on to current MetOp satellite series
- MetOp-SG will consist of pairs of satellites
- >20 year overall mission lifetime

MetOp Second Generation concept			
	MetOp-SG-A	MetOp-SG-B	
Launch	~2019	~2020/2021	
Orbit	LEO, polar, Sun-synchronous	LEO, polar, Sun-synchronous	
Altitude	817 km	817 km	
Mass	~3000 kg	~2400	
Lifetime	8.5 years	8.5 years	
Intstruments	8	7	
	Visible Infrared Imager (DLR)	Microwave Imager (ESA)	
Microwave Sounder (ESA) Ice Cloud Imager (ESA)			
	Infrared Sounder (CNES)	Scatterometer (ESA)	
	Radio Occultation (ESA)	Radio Occultation (ESA)	
	Multi-view Multi-channel Multi-polarization imager (ESA)	Argos Data Collection Service (NOAA/CNES)	
	Radiation Energy Radiometer (NOAA)	Search and Rescue (COSPAS-SARSAT)	
	Sentinel-5 (ESA/GMES)	Space Environment Monitor (NOAA)	
	Low Light Imager (NOAA)		

The Microwave sounder

MWS

Microwave Sounding

Objectives

- Temperature/humidity profiles in clear and cloudy air
- Cloud liquid water total column
- Imagery: precipitation

Heritage

AMSU-A, MHS

Baseline performance

- as AMSU/A, MHS
- horizontal resolution as ATMS

Implementation

- NOAA ATMS as baseline
- ESA development in Phase A as option

Evolution

- Addition of a quasi-window channel at 229 GHz
 - Cirrus cloud information
- Higher spatial oversampling compared to AMSU-A and MHS: noise reduction
 - More information on temperature and water vapour profiles

What does the MWS do?

- Measures global temperature and water vapour profiles for Numerical Weather Prediction (NWP).
- Scans the Earth across track, with 93 pixel over a scan of ± 53°.
- Scan duration determined by 17 km footprint for the higher frequency channels.
- Instrument self-calibrates each scan rotation with a view to cold space and to an on-board (hot) calibration target (OBCT).
- Increase to 24 channels (cf 5 channels in MHS)
- Mode of operation almost identical to MHS

MWI Microwave Imaging

Objectives of a new mission

- precipitation and cloud products
- water vapour profiles and imagery
- sea-ice, snow, sea surface wind

Heritage

SSM/I(S), AMSR-E

Baseline performance

4 spectral channels as SSM/I (18.7 - 89 GHz)

Implementation

ESA development

Breakthrough: 19 channels

- Continuity of key microwave imager channels for weather forecast
- Inclusion of dedicated sounding channels
 - Enhanced precipitation measurements through inclusion of dedicated sounding channels

Extension towards 183 GHz

water-vapour and cloud profiling

R55 (2011)

-

ion

Cloud Liquid Column

mm

ICI: Ice Cloud Imaging

Objectives of a new mission

- Cloud products, in particular ice clouds
- Snowfall detection and quantification
- Water-vapour profiles and imagery

Heritage

Aura-MLS, Odin-SMR (both limb viewing)

Baseline performance

- Conically scanning
- Nadir-viewing geometry
- 11 spectral channels
 - 183 664 GHz

Implementation

ESA development

100 hPa 147 hPa 215 hPa

maim

Mean Cloud Ice, December, 2004

NASA: Aura/MLS

Breakthrough: 11 channels

- Establishes operational ice-cloud imaging mission
- Support of weather forecast, hydrology, and climate monitoring

Key technologies for MetOp-SG

- Heterodyne receiver breadboard (STFC-RAL)
 - 183GHz subharmonic mixer, local oscillator, IF Electronics
- Optimised feedhorn design at 183 GHz (Astrium)
- 165/183GHz waveguide diplexer (Astrium)
- Development of a 183/229 GHz quasi-optics system (Astrium/RAL)

Astrium/RAL/Thomas Keating

The SHIRM for STEAM-R

- The SHIRM Sub-Harmonically pumped Image-Rejection Mixer (RAL/Astrium)
- Demonstrated successfully with CEOI funding

Other UK Developments in Passive Microwave/ Millimetre Wave

- Frequency Selective Surface (FSS) Filters (QUB)
 - Frequency separation in quasi-optics systems
 - Ultra low insertion loss at >350GHz
- Wideband spectrometer (STAR-Dundee)
 - High spectral resolution with digital FFT
- Calibration of microwave imagers (JCR Systems)
 - Improved techniques
 - Development of switcher/coupler technologies
- Metamaterials
 - Study of artificial micro-structures to reduce stray reflections in quasi optical systems

Queens University Belfast

STAR-Dundee

STFC-RAL